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Abstract

Model inversion (MI) attacks are categorized into optimization approaches, which use gradient-
based optimization and inversion via a secondary model. This study bridges the gap between
these two methods, focusing on a gray-box setting where the model’s architecture is known but
not its weights. The focus is on using a transposed convolutional neural network (TCNN) as an
inverse model to reconstruct images from a convolutional neural network’s (CNN) output vectors.
To address the gray-box setting, a shadow model is trained on the MNIST dataset to mimic the
target model’s behavior. The effect on image quality is tested based on the input combinations
for the TCNN, which consist of the output vector, gradient reconstructions obtained from the
gradient-based optimization approach, and activations from the shadow model’s last linear layer.
Results on the MNIST dataset show that the stand-alone gradient-based optimization recon-
structions have an average SSIM of 0.2409 ± 0.0068 and an average MSE of 0.0672 ± 0.0021.
Furthermore, the TCNN, acting as the inverse model of the target model, achieves an average
SSIM of 0.2298 ± 0.0041 and an average MSE of 0.0966 ± 0.0011 when passing just the output
vector through the model. The results also showed that from the different input combinations,
using gradient reconstructions as the input for the TCNN significantly enhances image fidelity,
achieving an average SSIM value of 0.3727 ± 0.0030 and an average MSE value of 0.0649 ±
0.0009. These reconstructions have a 54.73% higher SSIM value than the stand-alone gradient-
based optimization reconstructions. The reconstructions have 62.19% higher SSIM values than
the standard TCNN reconstructions, which only obtain the output vector as input. These find-
ings highlight the benefit of utilizing both directions of MI attacks to obtain the highest quality
reconstructions. The effects of defensive techniques like output vector rounding and truncation
are also examined. Rounding has minimal impact, while truncation increases SSIM; it makes the
generated images converge to the class average and lose the subtle features of a given target
image. This study highlights the risks of data leakage in deep learning and emphasizes the need
for robust defense mechanisms to protect sensitive information against MI attacks.
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1 Introduction

The integration of machine learning, particularly deep learning, into various domains has revolutionized
how we approach problem-solving and data analysis. With their sophisticated architectures, deep
learning models have demonstrated unparalleled efficiency [14] in tasks ranging from natural language
processing [9, 33, 34] to image recognition [6, 16, 23]. However, adopting these models in applications
dealing with sensitive information has raised significant security concerns. A particularly alarming issue
is the potential for deep learning models to inadvertently reveal information about their training data
through their parameters [2, 28]. Such vulnerabilities expose these models to model inversion attacks,
where attackers aim to reconstruct the original training samples, thereby compromising data privacy
[10].

Model inversion (MI) involves extracting information about the training data by analyzing the model’s
predictions [35]. Research on the topic has split into two directions. The first direction is the
optimization approach, where one inverts a model by using gradient-based optimization in the data
space [10, 11, 18, 30]. The second direction inverts a model by training a second model that acts
as the inverse of the original one [7, 20, 38, 35]. This work will utilize the inverse model and
gradient-based optimization approach to obtain higher-fidelity reconstructions.

It is important to note that most MI attacks are in a white-box setup. White box modeling produces
models whose structure is not hidden [1]. This means that the internal parameters and weights
are known to the attacker. The concern for MI attacks has been amplified by the feasibility of
reconstructions in a gray/black box setting [28]. A black-box setting is when the internal functioning
of the model is hidden [1], and a gray-box setting is in between a white and black box setup.
These approaches utilize “shadow models” that mimic the target model’s behavior to facilitate the
reconstruction of training data from output vectors [28]. These concepts underscore the urgent need
for strategies to safeguard against such susceptibilities.

As mentioned earlier, this work will utilize the inverse model and gradient-based optimization approach
to obtain higher-fidelity reconstructions. Additionally, the focus will be on a gray-box model setup to
further highlight the dangers of MI attacks. The following assumptions are maintained throughout
the work. The gray-box model setup within this work implies that the attacker knows the target
model’s architecture but not its weights, and the attacker has a disjoint dataset that is from the same
distribution as the target model’s training data. Furthermore, the target model will be a convolutional
neural network (CNN). Lastly, reconstructions will be performed by passing output vectors from the
CNN model as inputs through the inversion model, which is a transposed convolutional neural network
(TCNN).

In machine learning, more input data is considered to improve model performance. Therefore, this
work’s scope will investigate how different input data combinations impact the fidelity of reconstruc-
tions. The first input for the inverse model is the output vector obtained from the CNN. The following
inputs are computed using the output vector and the shadow model that imitates the target model
behavior. The second input option is a flattened representation of a gradient-based reconstruction
of a target image. The third input option are the last linear activations obtained from the shadow
model’s CNN. The activations are calculated using the trained shadow model’s frozen weights. The
ability to extract additional information (gradient-based reconstructions and last linear activations)
from just the output vector and a shadow model in a non-white-box setup allows for the potential of
reconstructing higher fidelity images.

The possibility of having the approach described above yielding high-fidelity images is concerning.
Therefore, it will also be investigated how standard prevention techniques such as truncation and
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output vector rounding impact the reconstruction quality of the proposed MI attack. By advancing
our understanding of these vulnerabilities and potential defenses, we can create a more secure and
trustworthy environment for the deployment of machine learning models [21].

1.1 Research Question

In light of these considerations, the central research question of this work emerges: How do different
factors influence the fidelity of image reconstruction using TCNNs within a non-white box framework?
Specifically:

• RQ1: How do variations in input combinations to the TCNN, including output vector, gradient
reconstruction, and last linear layer activations, impact reconstruction quality?

• RQ2: How do defensive mechanisms, like truncation and output vector rounding, affect the
quality of the reconstructed images?
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2 Related Work

Earlier work explored model inversion attacks, where the goal was to reconstruct the input from a
trained model’s output. Fredrikson et al. [10] implemented a model inversion attack on a multi-layer
perceptron (MLP) model to generate a recognizable image of a person using only their name or
identifier known from the model. The main mechanism used was gradient descent, in which they
optimized a cost function designed to reconstruct the input image as accurately as possible from
the model’s output [10]. It is important to note that their approach operated in a white-box setup,
allowing access to the original model’s parameters and weights.

Gradient-based reconstructions are not always the best choice. CNNs use max-pooling, which reduces
the spatial dimensions of the input feature maps while retaining the most significant information (the
maximum values in a pooling window) [36]. However, this gives rise to the coordinate transform
problem. This problem is that the exact location of the maximum value is not retained. Without the
retention of the maximum value location, subsequent layers lose the information about where features
are located relative to each other within the original input space. Since localization is essential in
reconstructions, gradient-based approaches may give rise to blur or distortion in reconstructions due
to loss of spatial information during the gradient computation. It is important to note that this issue
is specific to CNNs. Although not used in this work, Vision Transformers (ViTs) inherently handle
spatial information through attention mechanisms and positional encodings, hence mitigating the
spatial information loss seen in CNNs [8].

Zhao et al. [38] proposed a model inversion approach using transposed convolutional neural networks
(TCNN) to reconstruct images effectively. Their architecture combines a CNN for feature extraction
with a subsequent TCNN for image generation [38]. This CNN-TCNN structure is analogous to a
generator network [37]. Notably, they utilized the Mean Squared Error (MSE) loss function to guide
the image reconstruction process. The issue with MSE is that it is not normalized in representation
[26] and treats all pixel errors equally without considering the structural or semantic importance of
different parts of the image [19]. This means essential features like edges and textures, crucial for
human perception, may not be accurately reconstructed. This downfall will be addressed by using
the Structured Similarity Indexing Method (SSIM).

An advantage of TCNNs is their ability to retain spatial information during reconstruction. This is a
marked improvement over gradient-based inversion methods, which often struggle to preserve spatial
details [38]. TCNNs perform a procedure called “upsampling” by using transposed convolutional
layers that efficiently learn a way of approximately undoing the pooling operations learned during
CNN feature extraction. Progressive restoration of the image’s spatial resolution thus allows for a
more precise and sharp reconstruction.

The previous research has required access to the original model parameters or weights. To overcome
the limitations of direct model access, the concept of shadow models will be utilized. Shadow models,
as discussed by Shokri et al. [28], represent an innovative solution to perform membership inference
without needing direct access to the original model’s specifics. These models mimic the behavior of
the original models by learning from datasets presumed to be similar to those used in the original
training process [28]. Despite not being perfect replicas, shadow models provide a solution to not
having the target model’s weights and parameters. The concept of shadow models will be translated
from the membership inference task to this work’s task of image reconstruction.
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3 Methodology

3.1 Shadow Model

The shadow model in this research setup learns from image data DS
T ⊂ DS drawn from the same

distribution as the data used to train the target model DT
T ⊂ DT . Here,DS and DT represent the

entire datasets for the shadow and target models. Importantly, DS and DT are disjoint (DS ∩DT =
∅), ensuring no data leakage. This setup allows the shadow model to learn relevant features and
patterns applicable to the target model’s domain. Additionally, a validation set for the target model
DT

V ⊂ DT and a shadow model validation set DS
V ⊂ DS monitor the training process and prevent

overfitting, where DT
V ∩ DT

T = ∅ and DS
V ∩ DT

T = ∅. Comparing training loss with validation loss
allows for effective hyperparameter tuning and addressing potential overfitting.

The shadow model’s outputs are used to train the TCNN model. Why would one implement the
shadow model if one could train the TCNN based on the target CNN’s outputs? The answer lies in
the nature of target models functioning in a black box setting, which means there is no access to
their internal workings. Currently, developers of state-of-the-art AI systems often keep most details
of their models private [3], making the black-box setting increasingly common.

Furthermore, most of the time, in a real-world scenario, an attacker does not have access to the
training data of the target model. The reason for the training datasets not being publicly available is
that the datasets are either proprietary or contain sensitive data that cannot be shared publicly due to
privacy laws and confidentiality agreements [4, 5, 29]. A workaround to not having the exact training
dataset used for the target model is to use data from the same distribution as the target model’s
training data. By training a shadow model on this data, one can gain full access to a surrogate (the
shadow model) of the target model from which one can extract valuable information, such as the last
activation layer discussed in Section 3.5.

3.1.1 Shadow & Target Model Architecture

For this research, a simple CNN architecture is implemented for the shadow model denoted as MS .
This architecture aligns with the target model, denoted as MT , and is well-suited for capturing spatial
features in image data. The CNN architecture consists of three convolutional blocks, each following
the same structure:

1. A convolutional layer, tasked with extracting feature maps from the input images.

2. A batch normalization layer, which normalizes the activations of the previous layer, thereby
enhancing the stability and speed of the network’s training phase.

3. A max-pooling layer reduces the spatial dimensions of the feature maps, thus mitigating the
risk of overfitting and enhancing the network’s ability to generalize.

4. A Rectified Linear Unit (ReLU) activation layer is responsible for introducing non-linearity into
the network, which allows it to learn more complex patterns in the data.

Two fully connected layers are added after the final convolutional block to learn more complex
relationships between the extracted features. The architecture is visually represented in Figure 1. To
obtain the optimal model architecture that balances accuracy and robustness, the combinations of
dropout and activation functions between the linear layers are investigated in Section 4.2. The final
CNN architecture details for MS and MT can be found in Appendix A.
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Figure 1: Architecture of the Convolutional Neural Network (CNN)

3.2 TCNN

The primary goal of implementing a TCNN within this study is to obtain higher-quality image recon-
structions that surpass the capabilities of gradient-based reconstructions from a CNN. TCNNs ability
to retain spatial information during reconstruction makes it a better alternative in comparison to a
gradient-based inversion method, which often struggles to preserve spatial details [38].

3.2.1 TCNN Architecture

For this research, a simple TCNN architecture has been developed and implemented. The architecture
comprises of three distinct transposed convolutional blocks aimed at reconstructing the original image
from an output vector. Each block follows the following structure:

1. A transposed convolutional layer. This layer performs an approximate inverse operation of a
typical convolutional layer. Transposed convolutional layers increase the spatial dimensions of
the output, which is helpful for tasks such as image segmentation and generating high-resolution
images from low-resolution inputs.

2. A batch normalization layer. Following the transposed convolutional layer, the batch normal-
ization layer normalizes the activations. This step is vital for enhancing the stability and speed
of the network’s training phase by reducing internal covariate shift, where the distribution of
layer inputs changes as the parameters of the previous layers change.

3. A ReLU activation layer. This layer introduces non-linearity to the network, enabling it to learn
more complex patterns in the data. The ReLU function is employed here, which outputs the
input directly if it is positive; otherwise, it outputs zero.

Deploying this architecture, visualized in Figure 2, as the inversion model aims to increase the re-
construction quality of MI attacks. Using transposed convolutional layers effectively addresses and
overcomes the limitations of conventional gradient-based approaches. This improved method is ex-
pected to bring about higher fidelity reconstructions than gradient-based reconstructions.

Figure 2: Architecture of the Transposed Convolutional Neural Network (TCNN)
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3.3 Dataset

The Modified National Institute of Standards and Technology (MNIST) dataset is a well-established
benchmark for image classification tasks, particularly for handwritten digits [15]. It consists of 70,000
grayscale images (28x28 pixels) labeled with digits 0-9. 60,000 are training images, and the remaining
10,000 are testing images. MNIST offers several advantages. Due to its simplicity, small size, and well-
defined categories, MNIST is a great starting point for developing and evaluating image classification
algorithms. Additionally, MNIST’s widespread use allows for easy performance comparison between
different models and approaches. Finally, the free and public availability of MNIST facilitates research
reproducibility.

3.3.1 Preprocessing

For computational running time, a subset of 2,000 images per class (ie. 20,000 total images) would
be taken from the 60k training images, and a subset of 400 images per class (ie. 4,000 total images)
would be taken from the 10k testing images. The 20k training and 4k testing images were then split
further down as this research requires a train and validation set for the target model, a disjoint but
from the same distribution training and validation set for the shadow model, and finally, a test set is
required (DF ). The 20k training images were randomly split into a 50/50 ratio for the target and
shadow train sets, DT

T , D
S
T respectively. The distribution per class can be seen in Figure 3a and

3b, respectively. The 4k test set was split randomly into 3 equal but disjoint parts to create the
target validation set DT

V , shadow validation set DS
V , and test set DF . Figure 3c shows the test data

distribution. All the images were reshaped from 28 × 28 to 32 × 32 as seen in [35, 38] to fit the
model architecture. Figure 3 shows that there is no under or over-representation of any given class
within the different datasets. This is important because machine learning models frequently exhibit
drops in performance under the presence of distribution shifts [22].

(a) Target Train Set (DT
T ) (b) Shadow Train Set (DS

T ) (c) Test Set (DF )

Figure 3: Class distributions of datasets

3.4 Gradient Reconstructions

As mentioned in Section 2, gradient reconstructions have been used in an MLP setting, and this work
will extend on this and construct reconstructions from a CNN model’s outputs. These reconstructions
will then be flattened from a 32×32 image into a 1×1084 vector and passed as such into the TCNN
model to obtain even more realistic reconstructions.

The image to be optimized I can be initialized in 3 different ways: randomly shown in figure 4a,
from a specific instance of a class shown in figure 4b, or from the class average shown in figure 4c.
Class averages and instances are taken from the shadow model training data DS

T , which, as previously
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mentioned, is disjoint from the target model’s CNN training data. There are benefits and drawbacks
to each type of initialization.

Random initialization of image I provides an unbiased starting point and generalizability as it does
not provide any prior knowledge about the class and could potentially lead to discovering more
generalized features. The downside is that the final reconstruction is susceptible to getting stuck in
a local minima, and the number of iterations required to converge may be higher.

The reason for using a specific class instance initialization for image I is that it allows for higher
fidelity and faster convergence. Since one starts from an actual class instance, the gradient updates
will refine a real image rather than one from random noise and require fewer iterations, as the initial
point should be close to the target reconstruction. The downside is that a specific instance might
bias the reconstruction towards specific features of that particular class. Furthermore, if the specific
instance selected from a class is not representative of that class, it can lead to reconstructions that
are part of the given class but cannot deviate from the unique features of the initial image.

The final initialization method uses class averages for the image I. This technique helps achieve
more stable convergence by avoiding the outlier characteristics of a class found in individual class
examples. As a result, it can recreate the most representative features of the instance with fewer
iterations. However, the reconstruction might focus on irrelevant features if the class average is not
well aligned with the class characteristics relevant to the output vector.

(a) Random Noise (b) Specific Class Instance (c) Class Average

Figure 4: Different types of initializations of image I at t = 0

A few definitions have to be made to calculate the gradient-based reconstructions. Let I be a set
of initialized images that will be updated at each time step t to converge to the corresponding
target images. Within this work, I will be updated 400 times. y represents the target labels of I.
Furthermore, let MS be the shadow CNN model.

It = It−1 − η · ∇ILtotal(It−1),

It = clamp(It, 0, 1) = max(0, min(It, 1))

Images I are updated based on the gradient of the total loss, and their values are clamped to ensure
they remain within valid image pixel ranges (0 to 1). The loss function used is defined below:

Ltotal(I, y) = LCE(I, y) +RL2(I) +RTV(I) (1)

The combination of cross-entropy loss (LCE), L2 regularization (RL2), and total variation regular-
ization (RTV) results in a comprehensive overall loss function that balances classification accuracy,
perturbation magnitude, and visual coherence. Each of the loss function’s components serves a very
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distinct and vital function to optimize and enhance the reconstruction of the optimized image.

LCE(I, y) = −
C∑

c=1

yc log(softmax(MS(I))c) (2)

RL2(I) = λreg-l2

∑
i,j

I2i,j (3)

RTV(I) = λreg-tv

∑
i,j

(∥Ii,j − Ii+1,j∥+ ∥Ii,j − Ii,j+1∥) (4)

Within Formula 2, C represents the total number of classes in the classification problem (MNIST:
C = 10). Here, yc is either 0 or 1, indicating whether the class label is the correct classification.
MS(I) represents passing image I through the model MS . Formulas 3 and 4 use Ii,j notation;
within this work, i, j represent the indices of the image I. Lastly λreg-l2 and λreg-tv are the two
hyper-parameters that will be tuned in section 5.1.

Cross-entropy loss (LCE) measures the discrepancy between the predicted labels and the true labels.
It effectively guides the model towards more accurate predictions by penalizing deviations from the
true class labels [17]. L2 regularization (RL2) and Total Variation regularization (RTV) are both
used to impose smoothness in optimization problems, but they do so in fundamentally different ways.
RL2 penalizes large values in I to ensure smaller perturbations, and it encourages the image to
have a globally low dynamic range, making it uniformly smooth without necessarily considering the
relationships between adjacent pixels [13]. RTV targets the spatial variation between adjacent pixels.
It penalizes the sum of the absolute differences between neighboring pixel values. This approach
encourages spatial coherence by making the value of a pixel close to that of its neighbors. Overall, it
encourages local smoothness while still allowing for sharp transitions, which is crucial in maintaining
edge integrity in images [24].

3.5 Linear Activations

The classifier model (CNN) utilizes two linear layers to go from the last feature map to the output
vector. The MNIST dataset’s output vector is of shape ten as there are ten classes. In this work, it will
be tested if a TCNN performs better in the task of reconstructing images if more information is passed
as input. Previous work by Zhao et al. [38] used alongside the output vector, the flattened gradient-
weighted class activation mapping, known as Grad-CAM, of the input to enhance the reconstruction
quality. Grad-CAMs use the gradients of any target concept, flowing into the final convolutional layer
to produce a coarse localization map highlighting important regions in the image for predicting the
concept [27]. Grad-CAMs are 2D, but Zhao et al. [38] turned them into 1D arrays to concatenate
them with output vectors. They saw significant improvement in their reconstructions due to the
added information. Within this work, Grad-CAMs will not be utilized as grad-cams require access to
the gradients with respect to specific layers within the model [27]. As access to the target model
is restricted and passing the target model’s image set DT through the shadow model breaks the
rules of the setup, calculating the Grad-CAMs for the output vectors from the target model proved
impossible. Instead, the activations from the shadow model’s last linear layer will be extracted,
resulting in 50 additional values that can be utilized in the reconstruction process. Although the last
linear activations are not the same as Grad-CAMs, the aim is still to see if the additional input to the
TCNN will help in achieving higher-fidelity reconstructions.
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To calculate the activations of the shadow model’s last linear layer, the following formulas are used:

AL
t =

{
AL

t−1 − η∇AL
t−1

L if L(AL
t−1) > τ

AL
t−1 otherwise

L = MSE(Zt, Y ) =
1

n
∥Zt − Y ∥2 where Zt = AL

t−1W
T + b

From the trained shadow model, MS , the last linear layer weights (W ) and bias (b) are extracted. Zt

is the result of a linear transformation of the activation layer AL
t by the weights W followed by the

addition of bias b. The goal is to find AL
t so that the MSE loss between Zt and the target output

Y is minimized. The activation layer AL
t is updated by taking the previous state of the activation

layer and subtracting a term proportional to the gradient of the loss function L with respect to AL
t−1

multiplied by the learning rate η. Due to the iterative updates to AL, there is a set condition that
AL shall continue to update for the current batch of output vectors until the loss falls below the
threshold of τ (set at 1.5).

3.6 Multi-Modal Inversion Attack Model

The baseline approach for training the TCNN involves using the output vector as the input. However,
other input variations may enhance image reconstruction. As previously stated, [38] demonstrated
that incorporating a flattened grad-cam into the input can effectively transform the TCNN into a
multi-modal system, thereby improving reconstruction quality. This work aims to delve deeper into
multi-modal inversion by exploring the integration of additional variables.

Specifically, this work examines the extraction of gradient reconstructions and the linear activations
from the last linear layer of a shadow CNN, as discussed earlier. The analysis focuses on how the
different input combinations of the output vector, the flattened gradient reconstruction, and the last
linear layer activations affect the fidelity and precision of the reconstructions. This investigation will
contribute to a more comprehensive understanding of how different input modalities influence the
performance of reconstructions with the use of TCNNs. By training and evaluating the TCNNs and
comparing the SSIM and MSE values (refer to Section 4.1.2), the study aims to determine the input
configuration that maximizes the quality of image reconstructions.
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3.7 Workflow

As multiple components have been discussed up to this point, this section aims to provide an overview
of how each previously discussed component interacts with each other and flows through the training
and testing procedure.

3.7.1 Training Procedure

Figure 5: This diagram illustrates the training procedure involving three key components: the Target
CNN (MT ), Shadow CNN (MS), and TCNN (MI).

Training can be broken down into three parts: the training of the target CNN model (MT ), the
shadow CNN model (MS), and the TCNN (MI). The training data, DT , is divided into target train
DT

T , target validation DT
V , shadow train DS

T , and shadow validation DS
V sets (see section 3.3.1). MT

and MS are trained on their respective training and validation data to obtain the output vectors OT

and OS , respectively. Two more components are required to train the TCNN MI .

Both gradient reconstructions and linear activations were described earlier in this work. For the
gradient reconstructions, there is an image I that is initialized at t = 0 (reference Figure 4). I is
then passed through MS to obtain Ŷ (blue arrows). Image I is updated based on the gradient of
the total loss (see Formula 1). This process is repeated 400 times, at which point the gradient-based
reconstruction X̃ is obtained (red arrows).

The linear activations AL are updated based on the gradient of the MSE loss between Zt and OS

(purple arrows). Zt is obtained by multiplying the last linear activations AL
t−1 by the extracted weight

matrix W and b (gray arrow) from the last fully connected layer from MS (brown arrows). As AL

will be iteratively updated, there is a set condition that AL shall continue to update until the loss
falls below a set threshold. Refer to section 3.5 to review the process.

The basic training of MI consists of having only the output vectors of the CNN as input (OS). This
work also explores how the different variations of input combinations to MI impact reconstruction
quality, hence the reason for calculating AL and X̃. The output of MI is x̂, the final reconstructed
image.
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Figure 6: This diagram illustrates the testing procedure involving three key components: the Target
CNN (MT ), Shadow CNN (MS), and TCNN (MI).

The testing procedure involves passing the test data DF through the target CNN model MT to
obtain the output vectors OT . To obtain the reconstructions from the TCNN MI , the gradient
reconstructions X̃ and the last linear activations AL must be computed.

As this work outlines, access to MT is restricted, so the trained shadow CNN model MS will be
used to obtain X̃ and AL. The only aspect that changes in the calculations is that instead of using
the output vector of the shadow model OS , the output vector OT is now used since the goal is to
reconstruct the images from the output vectors from the target CNN model MT . Afterward, the
combinations of the output vector OS , gradient reconstruction X̃, and last linear activations AL are
passed into the trained TCNN MI to obtain the reconstructions of the test data x̂.

13



4 Experimental Setup

4.1 Evaluation Metrics

4.1.1 Classification

The model that is under attack is a CNN model trained on the MNIST dataset. To evaluate how
the CNN model is performing, the F1 score will be used. The reason is that the F1 score is balanced
in terms of precision and recall. As the MNIST dataset contains ten classes, the weighted F1 scores
will be used, which can be defined as:

F1weighted =

n∑
i=1

Ni

N
· F1i (5)

In this formula, n is the total number of classes (in this case, 10). Ni is the number of true instances
for class i. N is the total number of instances across all classes. F1i is the F1 score for class i,
calculated as:

F1i = 2 · Precisioni · Recalli
Precisioni + Recalli

Precision (Precisioni) is defined as TPi

TPi+FPi
, and recall (Recalli) is defined as TPi

TPi+FNi
. Here, TPi

represents the number of true positives, FPi represents the number of false positives, and FNi

represents the number of false negatives for class i.

4.1.2 Image Reconstruction

The effectiveness of reconstructions is evaluated by the resemblance to the original input. To eval-
uate a reconstruction that is recognizable to a human, this research will leverage various aspects of
reconstruction quality.

The Human visual perception system is highly capable of identifying structural information from
a scene, which allows humans to identify the differences between the information extracted from a
reference and a sample scene [32]. Unlike traditional metrics like Mean Squared Error (MSE) and Peak
Signal-to-Noise Ratio (PSNR), which focus solely on pixel-wise intensity differences, the Structural
Similarity Index (SSIM) offers a more comprehensive evaluation. It accomplishes this by incorporating
considerations of local image structure, luminance, and contrast. This alignment with human visual
perception makes SSIM a valuable tool, as it assesses the quality of reconstructed images from a
perspective that resonates with humans.

This work, like Zhao et al. [38], will utilize 11 × 11 Gaussian kernels within the SSIM calculation
to compare the different levels of granularity between two images. They calibrated τ to match the
human perceived similarity such that τ = 1.5 for the MNIST dataset. N is the total number of
elements in the window (for an 11× 11 window, N = 121).

wi =
exp

(
− i2

2τ2

)
∑N

i=1 exp
(
− i2

2τ2

) (6)

To delve deeper into the SSIM metric, image characteristics can be broken into three key components:
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• Luminance: Measured by the mean intensity of the pixels. luminance, denoted as µx, reflects
the overall brightness level. SSIM compares the luminance of the reconstructed image with the
target image, denoted as l(x,y), to gauge their similarity in overall brightness.

µx =
1

N

N∑
i=1

wixi (7)

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
(8)

Formula 7: xi is the i’th pixel value of the image x. A Gaussian window (see Formula 6), wi,
focuses the overall SSIM calculation on the local region of the image. N is the total number
of pixel values in image x.
Formula 8: x is the reconstructed image and y is the target image. C1 = (K1L)

2. K is a
small constant, and L is the dynamic range of the pixel values (0-1 for scaled images).

• Contrast: The standard deviation of pixel intensities captures the contrast level within an
image. SSIM analyzes the contrast between the reconstructed and target images, ensuring the
reconstructed image retains the same level of detail and variation in brightness as the original.

σx =

(
1

N − 1

N∑
i=1

wi(xi − µx)
2

) 1
2

(9)

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
(10)

Formula 9: xi is the i’th pixel value of the image x. The same Gaussian window wi is utilized
as in Formula 7. N is the total number of pixel values in image x. µx is defined in Formula 7.
Formula 10: σ denotes the standard deviation of a given image. x is the reconstructed image
and y is the target image. C2 = (K2L)

2.

• Structure: This crucial aspect goes beyond mere intensity values and delves into the spatial
arrangement of pixels. SSIM calculates the correlation coefficient between the corresponding
regions of the reconstructed and target images. A high correlation signifies that the structural
patterns and relationships between pixels in both images are well-preserved.

sx =
x− µx

σx
(11)

s(x,y) =
σxy + C3

σxσy + C3
where σxy =

1

N − 1

N∑
i=1

wi(xi − µx)(yi − µy) (12)

Formula 11: x is a image. µx represents the mean of a given image and σ denotes the standard
deviation of a given image.
Formula 12: σ denotes the standard deviation of a given image. x being the reconstructed
image and y being the target image. C3 = (K3L)

2.

The three components are then merged to form the complete SSIM formula. It is important to note
that C1, C2, and C3 are used to avoid instability within the equations. To simplify the formulas, the
weights are set equal to each, α = β = γ, and declare that C3 = C2/2. Additionally, L=1 as pixel
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values in this work will range from 0-1, K1 = 0.01, and K2 = 0.03 [31].

SSIM(x,y) = [l(x,y)]
α · [c(x,y)]β · [s(x,y)]γ (13)

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(14)

To understand further details behind the math, see [31]. SSIM’s utilization of luminance, contrast,
and structure provides a more holistic evaluation of reconstructions. It ensures that the shadow model
captures not only the overall intensity levels but also the intricate details and structural relationships
within the images. This assessment is crucial for determining the effectiveness of the shadow model
in replicating the target model’s behavior. SSIM values range from -1 to 1, but in this work, the
SSIM values are normalized to a range of 0 to 1, where:

• SSIM = 1 represents a perfect match between the reconstructed and target images. At this
value, the reconstructed image’s luminance, contrast, and structure are identical to the target
image’s, indicating flawless preservation of image quality and structural integrity.

• SSIM = 0 signifies no structural similarity between the reconstructed and target images. At
this extreme, the reconstructed image bears no resemblance to the target image in terms of
luminance, contrast, and spatial arrangement of pixels, indicating a complete loss of quality
and structural fidelity.

MSE, despite its focus on pixel-wise intensity differences, is a fundamental and widely understood
metric in image processing. Its mathematical simplicity and straightforward interpretation, as it
measures the average squared difference between corresponding pixel values, provides a clear and
objective measure of error. Therefore, both the SSIM and MSE will be reported in this research.
Formula 15 illustrates how to calculate the Mean Squared Error (MSE) between two images, I1 and
I2. Here, M and N are the dimensions of the images, and I1(i, j) and I2(i, j) represent the pixel
values at position (i, j) in each image, respectively.

MSE(I1, I2) =
1

MN

M∑
i=1

N∑
j=1

(I1(i, j)− I2(i, j))
2 (15)

4.2 CNN Training

To find the best architecture for the target CNN MT , it was investigated whether adding an activation
function or dropout between the last two fully connected layers would improve performance. The
Rectified Linear Unit (ReLU), Sigmoid, Gaussian Error Linear Unit (GELU), and Sigmoid Linear Unit
(SiLU) activation functions were tested. The probability of dropout was set at 50%.

The CNN model, MT , was trained each time with DT
T , and the validation set DT

V is used to report
the weighted f1 scores (refer to Formula 5). Each setup was trained and evaluated five times, and
the respective weighted f1 score on the validation set, training loss, and validation loss are reported
in Table 1. The loss function used to train the CNN models is cross-entropy loss (refer to Appendix
A). As seen in Table 1, the best architecture for MT is no activation function and utilizing a dropout
of 50% between the two fully connected layers during training.

The target CNN model, MT , and the Shadow model, MS , utilize the best architecture found above
and are trained on DT

T and DS
T , respectively. Both models are trained on 20 epochs and use their

respective validation sets DT
V and DS

V , as described in Section 3.3.1. The weighted f1 score from the
respective validation sets, training loss, and validation loss for both models can be found in Table 2.
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Activation Function Dropout (p=0.5) F1 Score Training Loss Validation Loss

None No 0.9838 ± 0.0027 0.0179 ± 0.0108 0.0693 ± 0.0153
None Yes 0.9865 ± 0.0019 0.0186 ± 0.0137 0.0585 ± 0.0149
ReLU No 0.9750 ± 0.0114 0.0124 ± 0.0168 0.1308 ± 0.0727
ReLU Yes 0.7113 ± 0.3255 1.4131 ± 0.4051 0.7747 ± 0.6425
Sigmoid No 0.9851 ± 0.0030 0.0148 ± 0.0153 0.0533 ± 0.0182
Sigmoid Yes 0.8829 ± 0.1553 0.6599 ± 0.3926 0.2994 ± 0.2636
GELU No 0.9826 ± 0.0061 0.0075 ± 0.0165 0.0735 ± 0.0285
GELU Yes 0.8918 ± 0.0909 1.3403 ± 0.2281 0.5522 ± 0.2578
SiLU No 0.9770 ± 0.0081 0.0110 ± 0.0153 0.1062 ± 0.0402
SiLU Yes 0.8714 ± 0.1602 1.2120 ± 0.3972 0.5598 ± 0.4410

Table 1: Impact of Dropout and Activation Functions on Fully Connected Layers in CNN Architecture

Furthermore, the confusion matrix for MT and MS can be found in figures 7a and 7b, respectively.
Both the table and the matrices confirm that the shadow model is able to imitate the behavior of the
target model while being trained on data from the same distribution but being disjoint (DS∩DT = ∅)
as mentioned in Section 3.1.

Model F1 Score Training Loss Validation Loss

MT 0.9856 0.0187 0.0483
MS 0.9866 0.0288 0.0491

Table 2: Training & Validation loss of Target CNN (MT ) and Shadow CNN (MS)

(a) Confusion Matrix from MT (b) Confusion Matrix from MS

Figure 7: Confusion Matrices
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5 Experiment Results

5.1 Hyperparameter Tuning for Gradient Reconstructions

With gradient reconstructions, three hyperparameters can be tuned. The first two hyperparameters
are λreg-l2 and λreg-tv seen in formulas 3, and 4 respectively. They affect the total loss function
that is minimized in the process of gradient reconstructions (formula 1). The last hyperparameter
investigated is the initialization of image I at t = 0, denoted as I0, which can be random noise, a
specific class instance, or a class average image.

To tune λreg-l2 and λreg-tv, random grid search was implemented. Random grid search is a method of
hyperparameter tuning where, instead of exhaustively searching all possible combinations, it samples
a subset of combinations at random. The search space for λreg-l2 is {λreg-l2 ∈ R | 1×10−5 ≤ λreg-l2 ≤
3 × 10−2}, and the search space for λreg-tv is {λreg-tv ∈ R | 1 × 10−6 ≤ λreg-tv ≤ 3 × 10−2}. The
values were sampled from a log distribution from the specified ranges.

Sampling from a log-uniform distribution means generating random values from a distribution where
the logarithm of the variable follows a uniform distribution. In other words, if X follows a log-uniform
distribution, log(X) will follow a uniform distribution. Mathematically, if X is log-uniformly dis-
tributed in the range [a, b], it implies that log(X) is uniformly distributed in the range [log(a), log(b)].

Log-uniform distributions are commonly used in hyperparameter tuning for machine learning models.
Parameters like learning rates and regularization strengths have a wide range of reasonable values
that span multiple orders of magnitude. A log-uniform distribution allows for a broader search space
that effectively covers small and large values.

The random grid search is broken down into the coarse search and the fine search. First, the coarse
random search is performed, which considers the entire search space defined above for λreg-l2 and
λreg-tv. This involves 20 iterations of random selection within the search spaces, with each iteration
comprising 320 gradient reconstructions using the selected values for λreg-l2 and λreg-tv. The average
SSIM of the reconstructions is saved. The gradient reconstructions are calculated from output vectors
OS , which are obtained by passing training images I ⊂ DS

T through the trained shadow model MS .
After the coarse random search is completed, the fine random grid search is performed to refine the
hyperparameter values.

The fine search focuses on the most promising regions identified during the coarse search, allowing
for a more precise determination of the optimal hyperparameters. Given the best-found values for
λreg-l2 and λreg-tv are λbest-l2 and λbest-tv respectively, the fine search spaces are defined as {λreg-l2 ∈
R | 0.5 · λbest-l2 ≤ λreg-l2 ≤ 1.5 · λbest-l2} and {λreg-tv ∈ R | 0.5 · λbest-tv ≤ λreg-tv ≤ 1.5 · λbest-tv}. The
fine random grid search consists of 10 iterations within the fine search spaces, with each iteration
comprising 320 gradient reconstructions using the selected values for λreg-l2 and λreg-tv. The average
SSIM of the reconstructions is saved. Just like in the coarse random search, the gradient reconstruc-
tions are calculated from output vectors OS , which are obtained by passing training images I ⊂ DS

T

through the trained shadow model MS . Figure 8 shows the average SSIM values for λreg-l2 and λreg-tv.
As the goal is to maximize SSIM values, the best hyperparameters are: λreg-l2 ≈ 4.4323× 10−5 and
λreg-tv ≈ 9.487 85× 10−3
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Figure 8: Random Grid Search for λreg-l2 and λreg-tv

To investigate which initialization method is the best, gradient reconstructions were done for all
images in the validation set DS

V , in which the target output vector is obtained from the shadow
model MS , and then I0 is optimized to minimize the loss. Furthermore, the gradient reconstructions
were done for all images in the test set DF , where the images were passed through the target model
MT to obtain the output vectors used for reconstruction. It is important to reiterate that although
the output vectors are obtained from MS , the gradient reconstruction process only utilizes the shadow
CNN model, MS . Please refer back to Sections 3.7.1 and ?? for the workflow. The reconstructions
were done five times, and the average SSIM and the MSE are reported in Table 3. Based on the
validation set scores, the best initialization method for image I is class average initialization.

Although MS can imitate the behavior of MT (refer to Section 4.2), the exact weights in the models
may differ, which leads to the decrease in SSIM and an increase in MSE when doing the gradient
reconstructions with MS on the test set as the output vectors are obtained from MT . To facilitate
comparison with the reconstructions from the TCNN models, the SSIM and MSE scores from the test
set DF are also shown in Table 3. Additionally, Figure 12 shows the best gradient reconstructions
per class on the test set.

Shadow Validation Set Test Set

Initialization Method SSIM Average MSE Average SSIM Average MSE Average

Random Pixels 0.0536 ± 0.0081 0.1032 ± 0.0042 0.0417 ± 0.0065 0.1136 ± 0.0047
Specific Class Instance 0.2476 ± 0.0138 0.0687 ± 0.0078 0.1846 ± 0.0141 0.0778 ± 0.0084
Class Average 0.3014 ± 0.0079 0.0601 ± 0.0037 0.2409 ± 0.0068 0.0672 ± 0.0021

Table 3: Image Initialization Impact on Gradient Reconstructions

19



Figure 9: Target Reconstructions from DF

Figure 10: Random Noise Initialization Reconstructions from DF

Figure 11: Specific Class Instance Initialization Reconstructions from DF

Figure 12: Average Class Initialization Reconstructions from DF

5.2 Best Model Configuration

Different TCNNs, denoted as MI , were tested to see the best input combination for reconstructions.
Each TCNN is trained on 20 epochs. SSIM is utilized as the loss function for training. Since higher
SSIM values are the goal, the objective is to minimize Loss = 1 − SSIM. The baseline approach
passes the output vector from the CNN into the TCNN. With the utilization of the shadow model,
for each output vector (O) there is now a flattened gradient reconstruction (X̃) and activation’s of
the shadow models last linear layer (AL) available. There are seven combinations of the three inputs.
Each model was trained five times, and the average SSIM over the test set DF was reported. Refer
back to Section ?? to see how DF flows through the workflow. In Table 4, it can be seen that passing
just the gradient reconstruction (X̃) as input to the TCNN provides the best reconstructions with an
average SSIM of 0.3727 and average MSE of 0.0649 on the test set.

Model SSIM Average MSE Average

MI(O) 0.2298 ± 0.0041 0.0966 ± 0.0011
MI(A

L) 0.1218 ± 0.0043 0.1077 ± 0.0014

MI(X̃) 0.3727 ± 0.0030 0.0649 ± 0.0009
MI(O +AL) 0.1619 ± 0.0027 0.1055 ± 0.0016

MI(O + X̃) 0.2467 ± 0.0013 0.0904 ± 0.0013

MI(A
L + X̃) 0.1822 ± 0.0051 0.0961 ± 0.0012

MI(O +AL + X̃) 0.2194 ± 0.0016 0.0927 ± 0.0011

Table 4: SSIM & MSE Averages for Different Input Variations on Test Set DF

The results disproved the belief that increasing the input features for a TCNN would lead to recon-
structions with higher SSIM and lower MSE. A possible explanation for this unexpected outcome is
the potential for increased input complexity to introduce additional noise and redundancy, thereby
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hindering the model’s ability to learn effectively. When combining multiple inputs, the TCNN may
struggle to differentiate the most relevant features, leading to suboptimal performance. In contrast,
the gradient reconstruction (X̃) alone likely offers a more concise and informative representation,
enabling the TCNN to focus on the most pertinent details for accurate image reconstruction. This
finding underscores the importance of carefully selecting input features to balance the richness of
information with simplicity, ultimately facilitating more effective learning and better reconstruction
quality. It was shown above that MI , the inverse model of MS performs the best when passing the

Figure 13: Target Reconstructions from DF

Figure 14: MI(X̃) Reconstructions from DF

gradient reconstructions, X̃ as input to MI . MI(X̃) achieves an average SSIM value of 0.3727 and
an average MSE value of 0.0649 on the test set, as shown in Table 4. The optimization approach,
utilizing gradient-based optimization, achieved an average SSIM value of 0.2409 and an average MSE
value of 0.0627 on DF , as shown in Table 3. The combination of the gradient-based optimization
with the inversion model (MI(X̃)) has a 54.73% increase in SSIM in comparison with the plain op-
timization approach (X̃). MI(X̃) also has a 62.19% increase in SSIM in comparison to the standard
inverse model (MI(O)). The best reconstructions on DF from MI(X̃) per class are shown in Figure
14. They provide clearer reconstructions that also mimic more closely the luminance, contrast, and
structure of the target reconstruction than the pure gradient reconstructions displayed in Figure 12.
To see the best reconstructions on DF from the other MI models shown in Table 4, go see Appendix
B.

5.3 Effect of Output Vector Rounding

Output vector rounding is one possible defense technique against the MI attack outlined in this work.
This method provides the end user only access to the output vector, where each value is rounded to
a given decimal point defined as d. To see the effect rounding has on the inverse model (TCNN)
approach, d is set to 1. It is important to note that the gradient reconstructions are also constructed
based on the rounded output vector.

Firstly, it was investigated how rounding the output vectors to one decimal place impacted a baseline
TCNN model that only obtains the output vector, denoted as MI(O). Afterward, it was investigated
what the impact is on the best input combination of passing the gradient reconstruction into the
TCNN, denoted as MI(X̃) (reference section 5.2). Table 5 shows that both models’ average SSIM
and MSE, after five iterations, stay the same regardless of rounding the output vector values.

There are multiple possible explanations for why the output vector rounding has no significant impact.
TCNNs have a level of robustness that withstands small perturbations to the input data. The rounding
effect adds a noise level but remains within the tolerance range; hence, the overall structure and
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Non-Rounded Rounded

Model SSIM avg. MSE avg. SSIM avg. MSE avg.

MI(O) 0.2287 ± 0.0031 0.0977 ± 0.0012 0.2295 ± 0.0025 0.0965 ± 0.0015

MI(X̃) 0.3720 ± 0.0043 0.0659 ± 0.0005 0.3716 ± 0.0060 0.0658 ± 0.0013

Table 5: Output Vector Rounding: SSIM & MSE averages for MI(O) and MI(X̃)

patterns are preserved. One would think that the rounded output vectors would impact the gradient
reconstructions (X̃) and hence the reconstructions obtained from MI(X̃). However, the gradient
values undergo only minor perturbations that do not significantly impact the model’s ability enough
to result in worse reconstructions.

5.4 Effect of Truncation

Another defense mechanism is truncating the output vector. From the output vector O, let k be the
dimension of the partial prediction. O is then truncated to k dimensions to obtain Ok(i.e., preserving
the top k scores and setting the rest to 0). The gradient reconstructions are obtained based on Ok.

To investigate the impact of truncation on the TCNN reconstructions, similar to the output vector
rounding experiment, two models will be investigated. The first is the baseline TCNN, which uses
only the output vector as input and is denoted as MI(O). The second model is the best TCNN input
configuration, which uses gradient reconstruction as input and is denoted as MI(X̃). As there are
ten classes in the MNIST dataset, it was decided to compare the average SSIM and MSE values over
the test set DF where k = 10, 5, 3, 1. Each TCNN is trained five times and assumes k is known to
the attacker.

SSIM Average

Model k10 k5 k3 k1

MI(O) 0.2538 ± 0.0025 0.3895 ± 0.0024 0.4092 ± 0.0018 0.4135 ± 0.0013

MI(X̃) 0.3747 ± 0.0015 0.4084 ± 0.0014 0.4172 ± 0.0027 0.4296 ± 0.0017

MSE Average

Model k10 k5 k3 k1

MI(O) 0.0952 ± 0.0003 0.0604 ± 0.0008 0.0580 ± 0.0007 0.0569 ± 0.0004

MI(X̃) 0.0649 ± 0.0006 0.0588 ± 0.0003 0.0572 ± 0.0005 0.0548 ± 0.0005

Table 6: Output Vector Truncation: SSIM & MSE averages for MI(O) and MI(X̃)

The results, presented in Table 6, reveal notable trends in the average SSIM and MSE values, providing
insights into the impact of truncation.

For the baseline TCNN model, MI(O), the average SSIM values increase from 0.2538 to 0.3895 as
the output vector is truncated from k = 10 to k = 5. This improvement continues slightly as k
is further reduced to 3 and 1, ending at an average SSIM value of 0.4135. The increase in SSIM
values with fewer k indicates that the reconstructions become more generalized, focusing on the
primary characteristics of the specific class, which results in higher perceived structural similarity.
The generalization of reconstructions can be seen in Figures 16, 17, 18, 19.
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Figure 15: Target Reconstructions from DF

Figure 16: MI(O): k = 10 Figure 17: MI(O): k = 5

Figure 18: MI(O): k = 3 Figure 19: MI(O): k = 1

The gradient reconstruction model, MI(X̃), begins with a SSIM of 0.3747 at k = 10. The SSIM
values continue to increase as k decreases and end at an SSIM value of 0.4296 at k = 1. While
the SSIM values improve with fewer k, it is essential to note that this improvement is due to the
generalization of the reconstructions. The images with higher k retain more fine details, which are
essential for capturing the subtle features of the original images. As k decreases, these finer details
are lost, resulting in more generalized but more structurally similar reconstructions. For instance,
take a look at the number ”2” in Figure 20. This particular ”2” lacks the loop at the bottom,
which is usually present in its standard form. When provided the full output vector (k = 10), the
reconstruction captures the characteristics of the target image well, as shown in Figure 21. As k
decreases, the loop at the bottom of the ”2” is developed, shown in Figures 22, 23, 24. The loop
at the bottom of the ”2” is a main characteristic of the class average of the number ”2” (reference
Figure 4c). This is just one explanation for when k decreases, the reconstructions will converge to
their class average representation, resulting in higher perceived structural similarity.

Figure 20: Target Reconstructions from DF

Figure 21: MI(X̃): k=10 Figure 22: MI(X̃): k=5

Figure 23: MI(X̃): k=3 Figure 24: MI(X̃): k=1

To summarize, truncating the output vector is an effective defense mechanism against reconstructions.
Although SSIM values increase as the dimensions of the output vector decrease, this comes at the
cost of losing the finer details that make the images unique within their class. This loss of detail
aligns with the overall goal of truncation: to generalize the reconstructions and reduce the specificity
that makes one able to differentiate between different instances in the same class.
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6 Conclusion

The concept of MI attacks was the focus of this research. MI attacks have branched into two direc-
tions. The first is the optimization approach, which inverts a model using gradient-based optimization
in the data space. The second direction is the training of the second model, which acts as the inverse
of the original model. This work combined both approaches and tested them in a non-white box
framework, which entails no direct access to the target model parameters and weights. The main
research question was: “How do different factors influence the fidelity of image reconstruction using
transposed CNNs within a non-white box framework?”

The research incorporated shadow models, which played a critical role in the reconstruction process.
These shadow models were essential in a gray-box setting, where the attacker’s knowledge is limited
to the target model’s architecture but not its weights. Training a shadow model on a disjoint dataset
from the same distribution as the target model’s training data made it possible to mimic the target
model’s behavior. This approach allowed for effective reconstructions without access to the target
model’s internal parameters.

To address the main research question, the first sub-question (RQ1) explored how different input
combinations to the TCNN—namely the output vector, gradient reconstruction, and activations
from the last linear layer—affect reconstruction quality. The study demonstrated that incorporating
gradient reconstructions improves the fidelity of image reconstructions. The TCNN model that
used only the gradient reconstruction (denoted as MI(X̃)) achieved the highest SSIM average of
0.3727± 0.0030 and an MSE average of 0.0649± 0.0009 on the test set DF .

The study also showed that combining the TCNN architecture with the gradient-based reconstructions
proved superior to the standalone gradient-based method on the test set, with an average SSIM
increase of 54.73%. This significant improvement underscores the TCNN’s ability to preserve spatial
details better than a gradient-based optimization approach. The improvement also highlights the
benefit of combining both approaches of MI attacks outlined above.

To address the main research question further, the second sub-question (RQ2) examined how defen-
sive mechanisms, such as truncation and output vector rounding, impact the quality of reconstructed
images. Output vector rounding to one decimal place showed no significant deterioration in re-
construction quality, indicating the robustness of the TCNN model to minor perturbations in the
input. Truncation of the output vector to the top-k scores (with k = 10, 5, 3, 1) revealed that while
SSIM values increased with fewer dimensions, this came at the cost of losing finer details in the
reconstructions, leading to more generalized images.

It is essential to acknowledge the limitations of this study. The reliance on the MNIST dataset
[15], while necessary for the initial exploration, does limit the generalizability of the findings to more
complex data. Additionally, the study primarily focused on relatively simple model architectures,
which may only partially represent the diversity of real-world models. More complex models, such
as deeper networks or those with different structures (e.g., ResNet, EfficientNet), might respond
differently to the input combinations and defensive mechanisms tested. Another limitation of the
work is the assumption that the attacker has access to a dataset from the same distribution as the
target dataset, as this assumption may not always hold in a real-world setting. These considerations
are crucial for comprehensively understanding the research’s scope and implications.
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7 Future Work

Looking ahead, the potential for further exploration and advancement is vast. Future work should
evaluate the proposed methods on more complex datasets, such as CIFAR-10 [12] or ImageNet
[25], to understand the scalability and effectiveness across different types of data. Doing so would
provide insight into whether the proposed MI attack is applicable in more diverse contexts. This work
attempted to extract more information from the shadow model to aid the reconstruction process of
the inversion model (the TCNN model). The last linear activations were calculated for each output
vector based on the trained and frozen weights and bias from the shadow model. Although inputting
these activations into the TCNN yielded poor reconstructions, the concept of extracting information
from the shadow model should be further investigated. One possible option is to extract the shadow
model’s last feature map based on a given output vector and pass it to the inversion model to see if
it yields better reconstructions than those obtained from the last linear layer activations.

Moreover, while truncation and rounding were somewhat effective, it is vital to continue testing
further defense mechanisms against MI attacks. One potential defense mechanism that could distort
reconstructions is adding a level of noise to the output vector. Another potential defense mechanism
could be training a secondary (student) model to approximate the original (teacher) model’s outputs
but with reduced precision or information leakage. Reconstructions on the student model may still
be possible, but they lack privacy-invasive details that may be apparent in the reconstructions based
on the teacher model.

The fusion of the two branches of MI attacks in this work has shown the possibility of recognizable
reconstructions. This work has opened the door for the future work described above. This work aims
to bring awareness to these types of MI attacks and the countermeasures one can implement to prevent
the potential of privacy-invasive reconstructions. Although the current state of reconstructions do
not pose an imminent threat, the topic of MI attacks continues to grow. Therefore, monitoring this
issue and implementing suggested countermeasures to protect data privacy is crucial.
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[30] Annamária R. Várkonyi-Kóczy. “Observer-Based Iterative Fuzzy and Neural Network Model
Inversion for Measurement and Control Applications”. In: Towards Intelligent Engineering and
Information Technology. Ed. by Imre J. Rudas, János Fodor, and Janusz Kacprzyk. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 681–702. isbn: 978-3-642-03737-5. doi:
10.1007/978-3-642-03737-5_49. url: https://doi.org/10.1007/978-3-642-03737-
5_49.

[31] Zhou Wang et al. “Image quality assessment: from error visibility to structural similarity”. In:
IEEE Transactions on Image Processing 13.4 (2004), pp. 600–612. doi: 10.1109/TIP.2003.
819861.

[32] L. de-Wit and J. Wagemans. “Visual Perception”. In: Encyclopedia of Human Behavior: Second
Edition (Jan. 2012), pp. 665–671. doi: 10.1016/B978-0-12-375000-6.00371-2.

[33] Lingfei Wu et al. “Graph Neural Networks for Natural Language Processing: A Survey”. In:
Foundations and Trends® in Machine Learning 16.2 (2023), pp. 119–328. issn: 1935-8237.
doi: 10.1561/2200000096. url: http://dx.doi.org/10.1561/2200000096.

[34] Stephen Wu et al. “Deep learning in clinical natural language processing: a methodical review”.
In: Journal of the American Medical Informatics Association 27.3 (Dec. 2019), pp. 457–470.
issn: 1527-974X. doi: 10.1093/jamia/ocz200. eprint: https://academic.oup.com/
jamia/article-pdf/27/3/457/34152802/ocz200.pdf. url: https://doi.org/10.
1093/jamia/ocz200.

[35] Ziqi Yang et al. “Neural Network Inversion in Adversarial Setting via Background Knowledge
Alignment”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS ’19. London, United Kingdom: Association for Computing Machinery,
2019, pp. 225–240. isbn: 9781450367479. doi: 10.1145/3319535.3354261. url: https:
//doi.org/10.1145/3319535.3354261.

[36] Afia Zafar et al. “A Comparison of Pooling Methods for Convolutional Neural Networks”. In:
Applied Sciences 12.17 (2022). issn: 2076-3417. doi: 10.3390/app12178643. url: https:
//www.mdpi.com/2076-3417/12/17/8643.

[37] Yuheng Zhang et al. The Secret Revealer: Generative Model-Inversion Attacks Against Deep
Neural Networks. 2020. arXiv: 1911.07135 [cs.LG].

[38] Xuejun Zhao et al. “Exploiting Explanations for Model Inversion Attacks”. In: Proceedings of the
IEEE International Conference on Computer Vision (Apr. 2021), pp. 662–672. issn: 15505499.
doi: 10.1109/ICCV48922.2021.00072. url: https://arxiv.org/abs/2104.12669v3.

28

https://doi.org/10.1016/j.compbiomed.2020.104130
https://doi.org/10.1016/j.compbiomed.2020.104130
https://doi.org/10.1016/j.compbiomed.2020.104130
https://doi.org/10.1007/978-3-642-03737-5_49
https://doi.org/10.1007/978-3-642-03737-5_49
https://doi.org/10.1007/978-3-642-03737-5_49
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1016/B978-0-12-375000-6.00371-2
https://doi.org/10.1561/2200000096
http://dx.doi.org/10.1561/2200000096
https://doi.org/10.1093/jamia/ocz200
https://academic.oup.com/jamia/article-pdf/27/3/457/34152802/ocz200.pdf
https://academic.oup.com/jamia/article-pdf/27/3/457/34152802/ocz200.pdf
https://doi.org/10.1093/jamia/ocz200
https://doi.org/10.1093/jamia/ocz200
https://doi.org/10.1145/3319535.3354261
https://doi.org/10.1145/3319535.3354261
https://doi.org/10.1145/3319535.3354261
https://doi.org/10.3390/app12178643
https://www.mdpi.com/2076-3417/12/17/8643
https://www.mdpi.com/2076-3417/12/17/8643
https://arxiv.org/abs/1911.07135
https://doi.org/10.1109/ICCV48922.2021.00072
https://arxiv.org/abs/2104.12669v3


A Model Architectures

Both MT and MS utilize cross-entropy loss defined in Formula 16. The Adam optimizer with a
learning rate of 0.001 is used to train the models. Their architectures are found in Figures 25a and
25b, respectively.

LCE(I, y) = −
C∑

c=1

yc log(softmax(M(I))c) (16)

Within Formula 16, C represents the total number of classes in the classification problem (MNIST:
C = 10). Here, yc is either 0 or 1, indicating whether the class label is the correct classification.
M(I) represents passing image I through the model M .

(a) MT Architecture (b) MS Architecture

Figure 25: CNN Architectures

MI utilizes SSIM as the loss function during training. Since higher SSIM values are the goal, the
objective is to minimize Loss = 1 − SSIM. The optimizer of choice was Adam, with a learning rate
of 0.001. The architecture is found in Figure 26.

Figure 26: TCNN Architecture, the input channel for the first layer changes depending on the input
provided. MI(O): channels=10. MI(A

L): channels=50, MI(X̃): channels=1024
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B Auxiliary Images

Figure 27: MI(O) Reconstructions (row 1: target images, row 2: reconstructions)

Figure 28: MI(A
L) Reconstructions (row 1: target images, row 2: reconstructions)

Figure 29: MI(O +AL) Reconstructions (row 1: target images, row 2: reconstructions)
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Figure 30: MI(O + X̃) Reconstructions (row 1: target images, row 2: reconstructions)

Figure 31: MI(A
L + X̃) Reconstructions (row 1: target images, row 2: reconstructions)

Figure 32: MI(O +AL + X̃) Reconstructions (row 1: target images, row 2: reconstructions)
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