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Abstract

We introduce MeDUSA (Medical Data Under
Shadow Attacks), a novel hybrid model inver-
sion framework that leverages gradient-based
optimization and TCNNs to reconstruct high-
fidelity medical images from model outputs in
a gray-box setting. Unlike traditional attacks
requiring full model details, MeDUSA uses
surrogate shadow models trained on publicly
available data, simulating limited-information
scenarios often encountered in practice. Our
approach shows that even with restricted ac-
cess, quality image reconstructions are pos-
sible, raising serious privacy concerns for pa-
tient data. Contributions include demon-
strating that a combination of gradient-based
methods and TCNNs yields potent reconstruc-
tions, even with limited model access, and
providing a detailed analysis of how different
input configurations impact reconstruction
quality. We also evaluate the reconstructions
as viable training data, finding that they can
approximate real images well enough to use
for model training. Finally, we propose robust
defensive mechanisms such as output vector
truncation, Gaussian noise, and a new k-NN
smearing technique to tackle privacy risks.

1 INTRODUCTION

The integration of deep learning into medical imaging
has provided substantial improvements in diagnostic
accuracy and efficiency (Litjens et al., 2017). However,
these advances come with significant privacy risks, es-
pecially when models are deployed in environments
where patient data security is paramount (Shokri et al.,
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2017). The vulnerability of machine learning models to
attacks that can reconstruct training data—commonly
known as model inversion (MI) attacks—is increas-
ingly concerning, particularly for sensitive domains
like healthcare (Fredrikson et al., 2015b). Such at-
tacks exploit model outputs to recover information
about private inputs, which can transform supposedly
de-identified medical data into identifiable patient infor-
mation, thereby compromising patient confidentiality
(Zhang et al., 2020).

In this paper, we introduce MeDUSA (Medical Data
Under Shadow Attacks), a novel hybrid model inver-
sion framework that leverages both gradient-based opti-
mization and transposed convolutional neural networks
(TCNNs) to reconstruct high-fidelity medical images
from output vectors. Unlike traditional MI attacks
that rely on a white-box setup, where complete model
details are accessible, our work is situated within a
gray-box setting—a scenario common in practical de-
ployments (He et al., 2019). In the gray-box setting,
the model architecture is known, but the weights are
not disclosed, and the attacker must rely on surro-
gate, or shadow, models trained on publicly available
data from the same distribution (Shokri et al., 2017).
MeDUSA shows that even in this limited-information
context, attackers can still extract highly detailed im-
age reconstructions, posing a significant risk to patient
data security.

Our main contributions are that:

• We demonstrate, for the first time, that combining
gradient-based reconstruction techniques with TC-
NNs in a gray-box setup can lead to high-fidelity
reconstructions of medical images, which under-
scores the underestimated vulnerability of output
vectors in deployed models

• We explore various input configurations, including
shadow model outputs, gradient-based reconstruc-
tions, and linear activations, to maximize recon-
struction quality, providing a thorough analysis
of how an attacker can effectively leverage these
inputs.
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• We show that these reconstructed images have util-
ity as synthetic training samples, further elevating
the potential damage if such data were to be used
maliciously.

• We evaluate standard defense mechanisms, such
as output vector rounding, truncation, Gaussian
noise, and propose “k-NN smearing", to under-
stand their effectiveness in mitigating the risk of
model inversion attacks.

Our results are particularly concerning for healthcare in-
stitutions deploying AI models in diagnostic workflows.
Hospitals often assume that by securing model weights
or restricting access to training data, patient privacy
can be preserved (Kaissis et al., 2020; Choi et al., 2017).
However, MeDUSA demonstrates that even the out-
put vectors generated during model inference can be
powerful enough to reconstruct sensitive images, effec-
tively making private data public. To address these
vulnerabilities, we emphasize the importance of robust
defensive strategies, particularly in gray-box scenar-
ios where full model protection may be impractical
(Wang et al., 2019). By advancing our understanding
of how output vectors contribute to potential privacy
breaches and evaluating practical defenses, our work
aims to enhance the safety and trustworthiness of ma-
chine learning models used in medical settings (Abadi
et al., 2016).

2 RELATED WORKS

Privacy in Medical Imaging. The intersection of
deep learning and medical imaging has brought signifi-
cant advancements in diagnostic capabilities, but it has
also introduced new privacy challenges. (Kaissis et al.,
2020) provide a comprehensive overview of the privacy
risks in medical imaging AI, highlighting the need for
secure and privacy-preserving techniques in healthcare.
(Choi et al., 2017) demonstrated the potential for gener-
ating synthetic medical records that maintain statistical
properties of real data while preserving patient privacy,
a concept that could be extended to medical imaging.

Model Inversion Attacks. Model inversion at-
tacks have evolved significantly since their introduction.
(Fredrikson et al., 2015b) pioneered the concept, show-
ing how an attacker could reconstruct recognizable
facial images from a facial recognition system using
only the model’s output and some demographic infor-
mation. (Zhang et al., 2020) advanced this field by
introducing a generative model-inversion attack that
could produce high-fidelity reconstructions of private
training data, demonstrating the increasing sophistica-
tion of these attacks. (Zhao et al., 2021) highlights the
privacy threats of explanations by showing the ability

to reconstruct private image data from model explana-
tions with transposed convolutional neural networks.
Within the context of medical imaging, this poses a
threat (Wu et al., 2020).

Shadow Models and Gray-box Attacks. The
concept of shadow models, crucial to our work, was
introduced by (Shokri et al., 2017) for membership
inference attacks. This approach has been adapted for
various privacy attacks in machine learning. (Salem
et al., 2019) further showed how these attacks could
be generalized with fewer assumptions about the tar-
get model, making them more applicable in real-world
scenarios. (He et al., 2019) extended this concept to
model inversion attacks in collaborative inference set-
tings, demonstrating how an adversary can reconstruct
sensitive inference inputs by exploiting intermediate
outputs in distributed deep learning models. This work
is particularly relevant to our gray-box setting.

Transposed Convolutional Neural Networks. TC-
NNs have emerged as a powerful tool for image recon-
struction tasks, capable of generating high-quality im-
ages from output vectors and outperforming traditional
gradient-based methods that often struggle to preserve
spatial details (Dumoulin, Visin, 2016; Dosovitskiy,
Brox, 2016). The TCNN architecture consists of trans-
posed convolutional layers that upsample the input,
batch normalization layers to stabilize and improve
training (Ioffe, Szegedy, 2015), and ReLU activation
functions to introduce non-linearity for learning com-
plex patterns (Nair, Hinton, 2010). Essentially, trans-
posed convolutional layers perform an approximate
inverse operation of standard convolutional layers, en-
abling TCNNs to generate high-resolution images from
low-resolution inputs, which makes them particularly
effective for model inversion attacks (Dosovitskiy, Brox,
2016; Yang et al., 2019; Zhao et al., 2021).

Further Enhancing Reconstructions The integra-
tion of additional information beyond output vectors
has shown promise in improving the quality of im-
age reconstructions in model inversion attacks. (Zhao
et al., 2021) demonstrated that incorporating gradient-
weighted class activation mappings (Grad-CAMs) (Sel-
varaju et al., 2019), alongside output vectors signifi-
cantly enhances reconstruction quality. Grad-CAMs
use the gradients flowing into the final convolutional
layer to produce a localization map that highlights
important regions for predicting a given concept. In
their approach, they flattened the 2D Grad-CAMs into
1D arrays and concatenated them with output vec-
tors, leveraging the spatial information captured by
Grad-CAMs to preserve structural details during re-
construction. However, this method requires access to
gradients with respect to specific model layers, limiting
its applicability in gray-box scenarios where such access
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is restricted.

Our work builds upon these insights but adapts to the
constraints of a gray-box setting. Instead of relying
on Grad-CAMs, which are not accessible without full
model access, we explore alternative methods to en-
hance reconstruction quality, such as utilizing shadow
models and combining gradient-based reconstructions
with output vectors. This approach allows us to main-
tain the benefits of additional input information while
working within the limitations of a more realistic attack
scenario.

3 METHODS

3.1 The Target & The Shadow

Currently, developers of state-of-the-art AI systems
often keep most details of their models private (Bom-
masani et al., 2023), making the gray-box setting in-
creasingly common. To get around the gray-box model
one can utilize a shadow model, MS , which will mimic
the behavior of the target model, MT , and hence act as
a surrogate model which is fully accessible. MS learns
from and trains on image data, DS

T ⊂ DS , drawn from
the same distribution as the data used to train the
target model, DT

T ⊂ DT . Here, DS and DT represent
the full datasets for MS and MT respectively. Impor-
tantly, DS and DT are disjoint (DS∩DT = ∅), ensuring
no data leakage. This setup allows MS to learn rele-
vant features and patterns applicable to MT ’s domain.
Additionally, a validation set for MT , DT

V ⊂ DT , and a
validation set for MS , DS

V ⊂ DS , monitor the training
process and prevent overfitting, where DT

V ∩ DT
T = ∅

and DS
V ∩ DT

T = ∅.

3.2 Datasets

The MNIST dataset (LeCun et al., 2010) is used to
quickly refine image reconstruction settings, including
the initialization method for gradient reconstructions
(Appendix 1A) and the input configurations for final
image reconstructions (Section 3.4). In this case, MS

and MT follow a simple CNN architecture.

MeDUSA is evaluated on increasingly complex and
various (Appendix 1B) biomedical imaging datasets
from the MedMNIST-V2 collection (Yang et al., 2023).
We utilize the following 2D datasets within the col-
lection: ChestMNIST, OCTMNIST, OrganAMNIST,
PathMNIST, DermaMNIST, and RetinaMNIST (Wang
et al., 2017; Kermany et al., 2018; Bilic et al., 2019;
Kather et al., 2019; Tschandl et al., 2018; Liu et al.,
2022), each of which presents unique medical imaging
classification challenges. All images are of size 224×224
pixels, and dataset pre-processing, along with training,

validation, and test splits, are provided by (Yang et al.,
2023). The training and validation sets are further
divided in half1 respectively to provide MT with DT

T

and DT
V , and MS with DS

T and DS
V , such that

(DT
T ∪ DT

V ) ∪ (DS
T ∪ DS

V ) = DT ∪ DS = D

, where D represents a full MedMNIST-V2 dataset.
Both MS and MT employ the ResNet-50 architecture
(He et al., 2016), and we denote the ResNet-50 bench-
mark model from MedMNIST-V2 as MMM , which is
trained on the full dataset D for all datasets.

3.3 Gradient Reconstructions

Gradient reconstructions have been used in an multi-
layer perceptron setting (Fredrikson et al., 2015a), and
our work will extend on this by creating reconstruc-
tions from a CNN model’s outputs. These reconstruc-
tions will then be flattened and passed as such into
the TCNN, MI , to obtain synthetic reconstructions
that aim to be indistinguishable from the ground-truth
image.

The image set to be optimized, Φ = {ϕ1, ϕ2, ..., ϕn},
can be initialized in 4 different ways: randomly, from
a specific instance of a class, from the class average,
or from a k-NN average. A k-NN average image is
calculated by finding the k closest output vectors in
DS

T and retrieving the corresponding images and aver-
aging them. Class averages and class instances are also
calculated from DS

T . Appendix 1A shows that the best
initialization method is k-NN averaging, where k was
optimized on each dataset.

Φ will be updated at each time step t to converge
to the corresponding target images, ΦT . Φ will be
updated 500 times. y represents the target labels of Φ.
Furthermore, let MS be the shadow CNN model.

Φt = Φt−1 − η · ∇ΦLtotal(Φt−1)

Φt = clamp(Φt, 0, 1) = max(0, min(Φt, 1))

Φ is updated based on the gradient of the total loss,
and their values are clamped to ensure they remain
within a valid image pixel range. The loss function
used is defined as:

Ltotal(Φ, y) = LCE(Φ, y) +RL2(ϕ) +RTV(ϕ) (1)

The combination of cross-entropy loss, L2 regulariza-
tion, and total variation regularization results in a
comprehensive overall loss function that balances clas-
sification accuracy, perturbation magnitude, and visual
coherence. Each of the loss function’s components

1Done randomly over five seeds.
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serves as a very distinct and vital function to optimize
and enhance the reconstruction of ΦT .

LCE(Φ, y) = −MC
c=1yc log(softmax(MS(ϕ))c) (2)

RL2(ϕ) = λreg-l2Mi,jπ
2
i,j (3)

RTV(ϕ) = λreg-tvMi,j∈N ∥πi,j − πi+1,j∥ + ∥πi,j − πi,j+1∥ (4)

In Equation 2, C represents the number of classes,
and yc ∈ B, indicating whether the class label is the
correct classification. MS(ϕ) represents passing image
ϕ through the model MS . Equation 3 and Equation
4 use πi,j notation; where (i, j) represent the indices
of the pixel π. Lastly λreg-l2 and λreg-tv are the two
hyper-parameters that will be tuned in Section 4.3.

LCE measures the discrepancy between the predicted
labels and the true labels. It effectively guides the
model towards more accurate predictions by penalizing
deviations from the true class labels (Ma et al., 2021).
RL2 and RTV are both used to impose smoothness in
optimization problems, but they do so in fundamen-
tally different ways. RL2 penalizes large values in ϕ
to ensure smaller perturbations, and it encourages the
image to have a globally low dynamic range, making it
uniformly smooth without necessarily considering the
relationships between adjacent pixels (Yuying et al.,
2022). RTV targets the spatial variation between ad-
jacent pixels. It penalizes the sum of the absolute
differences between neighboring pixel values. This ap-
proach encourages spatial coherence by making the
value of a pixel close to that of its neighbors. Overall,
it encourages local smoothness while still allowing for
sharp transitions, which is crucial in maintaining edge
integrity in images (Rudin et al., 1992).

3.4 Unifying Inputs for Inversion Attacks

In the gray box setting, access to the target model is
restricted, making it impossible to obtain Grad-CAMs
and use them as inputs to MI , as done in (Zhao et al.,
2021). Instead, we incorporate components such as the
last linear activation, AL, the output vector, OS , and
corresponding flattened gradient reconstructions, X̃,
from MS as additional inputs to achieve higher-fidelity
final reconstructions via MI . The primary baseline
uses X̃ alone, while the secondary baseline uses OS

from the CNN as input to MI . However, other input
variations may enhance reconstruction quality.

Each MI was trained for 100 epochs using SSIM as
the loss function (L = 1− SSIM). As shown in Table
1, the input combination of OS + X̃ provided the best
reconstruction performance on the test set. Contrary to
expectations, increasing the number of input features
did not improve SSIM or reduce pixel-wise similarity
(1 - MSE). This may be due to the added complexity
introducing noise and redundancy, making it harder for

Table 1: Simple ablation on MNIST to select best input
configuration for final reconstructions. See Section 4.1
for the evaluation metrics’ definitions.

Method SSIM 1-MSE Γ(·)

X̃ 0.695 ± 0.003 0.993 ± 0.002 0.855 ± 0.002
MI (OS) 0.701 ± 0.004 0.993 ± 0.001 0.859 ± 0.001

MI (A
L) 0.641 ± 0.004 0.980 ± 0.001 0.732 ± 0.005

MI (X̃) 0.703 ± 0.003 0.995 ± 0.001 0.863 ± 0.002

MI (OS + AL) 0.685 ± 0.003 0.985 ± 0.002 0.788 ± 0.004

MI (OS + X̃) 0.710 ± 0.001 0.997 ± 0.001 0.869 ± 0.002

MI (A
L + X̃) 0.689 ± 0.005 0.987 ± 0.002 0.790 ± 0.006

MI (OS + AL + X̃) 0.697 ± 0.006 0.993 ± 0.005 0.856 ± 0.005

the model to learn effectively. When multiple inputs
are combined, MI may struggle to identify the most
relevant features, leading to diminished performance.

3.5 MeDUSA: Medical Data Under Shadow
Attacks

Training consists of two stages: (1) training the CNN
models, MT and MS ; (2) training the TCNN model,
MI . Models MT and MS are trained on their re-
spective training and validation datasets, as defined
in Section 3.2, to obtain the output vectors OT and
OS . To train MI , gradient reconstructions, X̃, are
computed for each output vector.

Figure 1: Training Phase. This part of the MeDUSA
framework shows the training procedure involving MT ,
MS , and MI model training.

For gradient reconstructions, an image batch Φ is ini-
tialized at t = 0 using k-NN initialization (see Section
3.3 and Appendix 1A). The image batch Φ is then up-
dated based on the gradient of Ltotal (shown by the red
arrows, see Equation 1), which uses the target output
vector (yellow arrow) and the current output vector
state MS(Φ) (blue arrows). This process is repeated
for 500 iterations until the gradient-based reconstruc-
tions X̃ are obtained. MI is then trained using the
combined input of OS and X̃ to produce the synthetic
reconstructions, x̂.

The testing procedure begins by passing the test
dataset, DF , through MT to obtain OT . To derive
reconstructions from MI , the gradient-based recon-
structions, X̃, must be computed. Since access to MT



Asfandyar Azhar, Paul Thielen, Curtis Langlotz

Figure 2: Inference Phase. This part of the
MeDUSA framework shows the testing procedure in-
volving MT , MS , and MI .

(and MMM ) is restricted in our study, the trained
model MS is used to compute X̃. The key difference
in this process is that, instead of using the OS vectors,
the OT vectors are utilized, as the goal is to reconstruct
images from the output vectors of MT . Finally, the
combination of the output vector OT and gradient-
based reconstructions X̃ is fed into the trained MI to
produce the final reconstructions of DF , denoted x̂.

4 EXPERIMENTS

For technical specifications and training information
related to our experiments, see Appendix 2.

4.1 Evaluation Metrics

Pixelwise Similarity. Mean Squared Error (MSE) is
commonly used to evaluate how well a reconstructed
image matches the original at the pixel level. We nor-
malize the pixel values of both images to the [0, 1]
range and compute the MSE. The similarity metric,
defined as 1 - MSE, provides a score between 0 and
1, where higher values indicate closer pixelwise corre-
spondence. This measure is simple and size-invariant,
focusing purely on numerical pixel differences between
the original and reconstructed images.

Structural Similarity Index (SSIM). While MSE
captures pixel-level differences, it does not reflect per-
ceptual quality. SSIM is a perception-based metric
that evaluates image similarity by comparing lumi-
nance, contrast, and structure between the original
and reconstructed images (Wang et al., 2004). By fo-
cusing on how humans perceive visual quality, SSIM
provides a more nuanced evaluation. It ranges from -1
to 1, where 1 indicates perfect similarity, factoring in
the perceptual quality of the reconstruction. However,
SSIM is highly sensitive to the factors it considers,
which are quite variable in medical imaging, making
it a potentially flawed metric in our case (Maruyama,
2023; Pambrun, Noumeir, 2015).

Geometric Hybrid Similarity. Hence, we propose
a Geometric Hybrid Similarity metric, denoted as Γ(·),
as a measure for assessing the fidelity of reconstructed
images in attack scenarios, particularly when using MI
for reconstruction. Unlike conventional similarity met-
rics that focus solely on either pixel-level differences or
directional alignment, Γ(·) combines the strengths of
both euclidean distance and cosine similarity. This al-
lows it to simultaneously account for the magnitude and
the directional alignment of the reconstructed and orig-
inal image embeddings. By incorporating both aspects,
Γ(·) provides a more nuanced evaluation of how well
an attack has preserved not only the overall structural
details but also the finer, identity-preserving features
of the reconstructed images. This is especially impor-
tant in settings like ours, where shadow model output
vectors and gradient-based reconstructions are used, as
attackers may succeed in maintaining key features even
if some image details are distorted. Therefore, Γ(·)
attempts to offer a holistic and conservative measure
of attack success in reconstructing sensitive medical
images. It is defined as:

Γ(E(ϕ), E(x̂)) =

(
e
−∥E(ϕ)−E(x̂)∥22

)γ

·

 1 +
E(ϕ)·E(x̂)

∥E(ϕ)∥∥E(x̂)∥

2

1−γ

where γ is a weight parameter (defaulted to 0.5), Γ(·) ∈
[0, 1], and (E(ϕ), E(x̂)) is the tuple that contains the
original and reconstructed image embeddings.

To compute the embeddings for Γ(·), we rely on the
penultimate fully connected layer of the shadow model
MS . This choice aligns with the gray-box setting,
where MT is not fully accessible, but MS serves as an
effective surrogate by learning from the same domain
distribution. Using MS ’s embeddings thus preserves
attack relevance: we measure similarity in the very
feature space that an adversary would realistically ex-
ploit. Furthermore, because MS closely approximates
MT (as shown in Section 4.2), its feature represen-
tations remain indicative of MT ’s behavior. We also
evaluated a separate ImageNet-pretrained ResNet-50
for perceptual embeddings, but observed only marginal
differences (1–2% on average), likely due to the archi-
tectural similarity among the models. Therefore, using
MS not only maintains consistency with the gray-box
threat model but also provides a task-specific and con-
textually appropriate embedding space for measuring
reconstructed image fidelity.

4.2 Forever Surrogates: MT ≈ MS

Given that DT
T ∩ DS

T = ∅ and 1
2 (K(DT

T ,DS
T ) +

K(DS
T ,DT

T )) < 0.22, allows MS to learn a similar de-
cision boundary as MT . As a result, the AUC and
accuracy on DF are similar for the two models, demon-
strating that MS replicates MT ’s behavior (Table 2).

2K(·) is the Kullback-Leibler (KL) Divergence score that
considers both pixel intensity histograms and extracted
features from a pre-trained encoder (see Appendix 1D).
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Table 2: Performance of MT and MS are approxi-
mately the same proving MS ’s surrogacy. This is a
trivial concept that serves as a starting point for our
experiments.

Dataset MT MS

AUC ACC AUC ACC

ChestMNIST 0.676 0.829 0.673 0.826
OCTMNIST 0.838 0.679 0.831 0.672
OrganAMNIST 0.873 0.829 0.878 0.834
PathMNIST 0.865 0.780 0.860 0.775
DermaMNIST 0.798 0.640 0.800 0.642
RetinaMNIST 0.626 0.447 0.628 0.449

Mean Scores 0.779 0.701 0.778↓0.01 0.700↓0.01

4.3 Grid-Search for Gradient Reconstructions

Gradient reconstructions use two hyperparameters,
λreg-l2 and λreg-tv, tuned via random grid search. This
approach samples random combinations instead of ex-
haustively searching all options. The search spaces
are defined as λreg-l2 ∈ [1 × 10−5, 3 × 10−2] and
λreg-tv ∈ [1×10−6, 3×10−2], with values sampled using
a log-uniform distribution to ensure better coverage
across a wide range of magnitudes.

Figure 3: Random grid search for λreg-l2 and λreg-tv.

The tuning process involves two stages. First, a coarse
search is conducted, consisting of 20 iterations across
the entire range, with each iteration involving 320 gradi-
ent reconstructions. The mean Γ(·) values are recorded
to identify promising regions. Once the coarse search
identifies suitable ranges, a fine search follows, focus-
ing on narrower ranges around the best coarse values,
denoted as λbest-l2 and λbest-tv. These refined ranges
are defined as [ 12 · λbest,

3
2 · λbest], and the fine search

includes 10 iterations, each with 320 reconstructions,
again tracking average Γ(·) scores. In both stages,
gradient reconstructions are derived from OS vectors,
obtained by passing DT

T through MS . The optimal
hyperparameters determined through this process were

λreg-l2∗ = 4.43 × 10−5 and λreg-tv∗ = 9.49 × 10−3 as
displayed in Figure 3.

4.4 Reconstruction Quality from MI

As discussed in Section 3.4 and shown in Table 1, the
combination of output vectors with their corresponding
gradient reconstructions produces the highest quality
final synthetic reconstructions. Table 3 displays the
reconstruction qualities of the baseline reconstructions
X̃ in comparison to MI(OT + X̃) across all datasets.

Table 3: It is empirically shown that the reconstruc-
tions MI outperform vanilla gradient reconstructions,
reflecting significant gains in the image reconstruction
quality evident in Figure 4. This underscores MI ’s
robustness across all the medical datasets.

Dataset Method SSIM 1-MSE Γ(·)

ChestMNIST X̃ 0.573 0.891 0.687
MI(OT + X̃) 0.697 0.996 0.805

OCTMNIST X̃ 0.529 0.881 0.649
MI(OT + X̃) 0.652 0.988 0.769

OrganAMNIST X̃ 0.550 0.888 0.667
MI(OT + X̃) 0.673 0.990 0.776

PathMNIST X̃ 0.435 0.834 0.583
MI(OT + X̃) 0.562 0.947 0.699

DermaMNIST X̃ 0.426 0.818 0.573
MI(OT + X̃) 0.552 0.931 0.687

RetinaMNIST X̃ 0.517 0.880 0.611
MI(OT + X̃) 0.639 0.982 0.730

Mean Scores X̃ 0.505 0.865 0.628
MI(OT + X̃) 0.629↑0.12 0.972↑0.11 0.744↑0.12

4.5 Reconstructions as Synthetic Training
Samples: Do They Have Any Utility?

We evaluate the performance of three ResNet-50 mod-
els: MMM , Msyn, and Msyn+. The model MMM is
trained on the dataset D, while Msyn is trained on
synthetic data, Dsyn = MI(DS

T ). Although the AUC
and accuracy of Msyn do not reach the benchmark,
MMM , they indicate that synthetic reconstructions
can be effective as training samples. Notably, Msyn+,
trained on a combined dataset Dsyn+ = DS

T ∪ Dsyn,
achieves performance within 5% of MMM , highlighting
the advantages of integrating synthetic data. Further-
more, the improved performance of Msyn+ compared
to MS (Table 2) suggests that using synthetic recon-
structions enhances the training process, leading to
better generalization. This improvement is consistent
across all datasets, implying that synthetic reconstruc-
tions contribute valuable information that complements
the original data. Also, we report that on average
1
2 (K(DT ,Dsyn) + K(Dsyn,DT )) = 0.419, indicating
that the distribution of synthetic images is progres-
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Figure 4: The first row shows the ground truth images, the second row shows their final synthetic reconstructions,
x̂ = MI(OT + X̃), and the third row shows the corresponding gradient reconstructions, X̃, for ChestMNIST.

sively converging to that of the real training data. This
convergence enables an adversary to approximate and
nearly replicate the deployed clinical model, under-
scoring the risk not only of data leakage but also of
potential model theft or replication.

Table 4: Performance comparison for MMM , Msyn,
and Msyn+.

MMM Msyn Msyn+

Data AUC ACC AUC ACC AUC ACC

ChestMNIST 0.773 0.948 0.404 0.496 0.710 0.885
OCTMNIST 0.958 0.776 0.499 0.403 0.933 0.727
OrganAMNIST 0.998 0.947 0.527 0.500 0.962 0.899
PathMNIST 0.989 0.892 0.516 0.465 0.921 0.813
DermaMNIST 0.912 0.731 0.480 0.385 0.845 0.694
RetinaMNIST 0.716 0.511 0.377 0.269 0.655 0.505

Mean 0.891 0.801 0.467↓0.42 0.420↓0.38 0.838↓0.05 0.754↓0.05

4.6 How Much Should We Hide From The
Shadows?

We further explore how varying the amount of training
data provided to Msyn+ affects the balance between
transparency and privacy. While sharing images can en-
hance transparency, it also poses a risk of exploitation
by attackers. The goal is to identify the optimal level
of data disclosure that promotes transparency without
excessively aiding adversaries. The results in Figure 5
show a clear decline in performance as the training data
for Msyn+ decreases. At 50% data availability, Msyn+

sees AUC and accuracy scores about 5% lower than the
benchmark MMM (Table 4). At 25%, the AUC drops
to 0.715 and accuracy to 0.617, reflecting decreases of
6.4% and 8.4%, respectively, compared to MT . Despite
Dsyn+ = DS

T ∪ Dsyn, where |DS
T | = |Dsyn|, the syn-

thetic data still supports Msyn+’s performance. How-
ever, at just 5% data availability, AUC falls by 63.6%
and accuracy by 57.1%, demonstrating that the more
data withheld, the greater the reduction in Msyn+’s
performance.

Figure 5: Performance of Msyn+ on DF given varied
|DS

T |. The blue heatmap displays the AUC while the
red heatmap displays the accuracy.

Figure 6 visually illustrates how reduced data avail-
ability affects the quality of synthetic reconstructions.
As data decreases, image quality declines, which ex-
plains the drop in Msyn+’s performance. With less
data to train on, the synthetic reconstructions provide
insufficient information, reducing their value as train-
ing images and leading to performance losses. This
serves as a defense mechanism among others that we
investigate in Section 4.7.

4.7 If We Can’t Hide, Then We Must Defend

Output Vector Rounding. Output vector rounding
is a potential defense against model inversion attacks
by rounding each value in the output vector to the
nearest fifth or tenth, limiting the information avail-
able to the user. Appendix 1C examines its impact
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Figure 6: Msyn+ reconstructions with varied |DS
T |.

Figure 7: Synthetic reconstructions with varying de-
fense strategies. From top to bottom: truncation, Gaus-
sian noise, k-NN smearing, and output vector rounding.
Green indicates the best setting for each method.

on the inverse TCNN model, MI , with gradient recon-
structions based on the rounded output. Despite this
rounding, it has no significant effect on reconstruction
quality, as MI is robust to small input perturbations.
The noise introduced by rounding remains within a
tolerable range, preserving the overall structure of the
reconstructions. Given the minimal impact of rounding,
we explore more advanced defensive methods.

Truncation. We examined how truncating output
vectors to different values, κ, impacts the quality
of MI(OT + X̃). As κ decreases, the loss of class-
discriminatory features increases, leading to lower qual-
ity reconstructions. This trend is seen in both the
metrics (first row in Figure 8) and the visual degrada-
tion of images (Figure 7). The optimal κ value can vary
by dataset, balancing security and transparency. For
ChestMNIST, κ = 3 could retain key decision-making
information while obscuring other details, effectively
guarding against model inversion attacks.

Gaussian Noise. We added Gaussian noise to output
vectors with varying standard deviations (σ) to assess
its impact on synthetic reconstruction quality. As σ
increased, the reconstructed image quality degraded,
shown by a drop in all metrics. Figure 7 and the
second row of Figure 8 illustrate how higher noise
levels result in increasingly blurred reconstructions.
This demonstrates that adding Gaussian noise is an
effective defense against model inversion attacks.

k-NN Smearing. We introduce a novel approach
called k-NN smearing to construct a mixed output
vector by averaging the output of a model with its
k-nearest neighbors. The core idea of k-NN smearing
is to generate a new output vector by blending the
original output with a set of its k-nearest neighbors
in a weighted manner, where the weights are selected
randomly subject to a unity constraint.

More formally, we have O0 and its k-nearest neigh-
bors, O1, O2, . . . , Ok. We denote all output vectors by:
Oifor i = 0, 1, 2, . . . , k. Let wi represent the weights for
each vector Oi, where: Mk

i=0wi = 1, andwi ≥ 0∀i. The
weights can be represented as: (w0, w1, w2, . . . , wk) ∼
Dirichlet(α) where α = (1, 1, . . . , 1) is a vector of ones
of length k + 1. Alternatively, if we generate ui from
a uniform distribution, we normalize them as follows:
wi = ui

Mk
j=0uj

, for i = 0, 1, . . . , k where ui ∼ U(0, 1).
Finally, the k-NN smeared output vector can be ei-
ther Osmeared = Mk

i=0

(
ui

Mk
j=0uj

)
Oi, ui ∼ U(0, 1) or

Osmeared = Mk
i=0wiOi, wi ∼ Dirichlet(α)3. This ap-

proach had the most efficacy as a defensive strategy
as the mean scores for SSIM, 1 - MSE, and Γ(·) were
(0.236, 0.364, 0.279) at k∗ = 25 (Figure 9).

5 CONCLUSION

This paper presented MeDUSA, a hybrid model inver-
sion framework that exploits vulnerabilities in medical
image models deployed in gray-box settings. By using
gradient-based optimization and TCNNs, MeDUSA
reconstructs high-quality medical images from model
outputs, which can expose confidential patient data and
risk proprietary model theft. Our experiments demon-
strated the effectiveness of defense mechanisms such
as truncation, Gaussian noise, and the k-NN smearing
technique, emphasizing the need for layered defenses
to safeguard patient data in clinical AI applications.

Limitations & Future Work. The effectiveness
of the defenses may vary depending on the dataset
and model architecture, requiring further exploration
to assess their generalizability across clinical settings.
Additionally, the use of surrogate shadow models as-

3Both weight generation methods performed similarly.
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Figure 8: OT with high truncation (top) or sufficient Gaussian noise (bottom) lead to bad reconstructions.

Figure 9: k-NN smearing has an optimal k∗ = 25. At higher k the reconstruction quality goes back up as ΦT

starts to approximate a set of class average samples.

sumes similar distributions between target and shadow
data, which may not always be practical in real-world
scenarios.

Training the target and shadow models on data from
the same distribution is ideal for producing a shadow
model that closely approximates the target. However,
domain shifts are common in medical imaging (e.g.,
data from different centers or devices), and in such cases
the performance of both gradient-based and TCNN-
based reconstructions is likely to degrade. One avenue
to address this limitation is domain adaptation: for
instance, adversarial domain adaptation techniques can
help align feature spaces between the shadow and tar-
get domains, even under significant distribution shifts.
Similarly, transfer learning from related datasets or us-

ing synthetic data that approximates the target domain
can improve the shadow model’s fidelity. Addressing
these issues is critical for developing stronger defenses
and that systematically studying their effectiveness is
an important direction for future work.

Ethical Considerations. Our findings highlight sig-
nificant ethical concerns. Reconstructing sensitive med-
ical images poses serious privacy risks, underscoring
the need for stricter guidelines in healthcare model
deployment. We advocate for continuous assessment
of AI models against inversion attacks and the integra-
tion of privacy-preserving methods at every stage of AI
development. Protecting patient confidentiality must
remain a priority as AI use in healthcare grows.
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Appendix 1: Additional Experiments

A. Initialization Method Selection

Table 1: Simple ablation on MNIST to select best initialization method for gradient reconstructions. The optimal
k-values for each dataset in MedMNIST-V2 are [k∗chest, k

∗
oct, k

∗
organa, k

∗
path, k

∗
derma, k

∗
retina] = [13, 6, 7, 22, 5, 10].

Method SSIM 1-MSE Γ(·)

Random 0.248 ± 0.014 0.931 ± 0.008 0.795 ± 0.011
Specific Instance 0.302 ± 0.079 0.940 ± 0.004 0.805 ± 0.006
Class Average 0.608 ± 0.133 0.965 ± 0.007 0.828 ± 0.012
k-NN Average 0.695 ± 0.098 0.969 ± 0.005 0.835 ± 0.008

Figure 1: Visual comparison of gradient-based reconstructions using different initialization methods on MNIST.

B. Measuring Dataset Complexity

Table 2: Equal weight is given to each normalized complexity metric to compute the final complexity score.

Dataset Entropy Edge Density Spatial Frequency Fractal Dimension Color Variance Complexity

MNIST 0.35 0.20 0.30 0.25 0.15 0.250 (7)
ChestMNIST 0.40 0.25 0.35 0.30 0.20 0.300 (6)
OCTMNIST 0.45 0.40 0.50 0.38 0.25 0.396 (4)
OrganAMNIST 0.42 0.35 0.45 0.33 0.22 0.354 (5)
PathMNIST 0.65 0.60 0.75 0.45 0.65 0.620 (2)
DermaMNIST 0.60 0.55 0.70 0.43 0.70 0.596 (3)
RetinaMNIST 0.68 0.65 0.80 0.48 0.85 0.692 (1)

Mean ± St. Dev 0.51 ± 0.13 0.43 ± 0.18 0.55 ± 0.20 0.37 ± 0.08 0.43 ± 0.27 0.458 ± 0.162

We quantified and compared the complexity of various medical imaging datasets from the MedMNIST collection
using a set of standard image complexity metrics. These include entropy, edge density, spatial frequency, fractal
dimension, and color variance defined as follows:

Entropy. Measures the randomness in pixel intensity values, indicating the amount of information or detail
in an image: H = −

∑L−1
i=0 P (i) log2 P (i), where L is the number of possible intensity levels (e.g., 256 for 8-bit

images), and P (i) is the probability of pixel intensity i.

Edge Density. Represents the proportion of edge pixels within the image, reflecting structural complexity:
|Edge Pixels|

| Pixels| (we used the Sobel edge detection algorithm).

Spatial Frequency. This metric captures the rate of intensity changes, indicating the level of texture and
fine-grained details:

√
F 2
r + F 2

c , where Fr is the row frequency and Fc is the column frequency derived from the
image’s 2D Fast Fourier Transform (FFT).



Fractal Dimension. This metric quantifies the complexity of self-similar patterns, useful for analyzing natural
textures: D = limϵ→0

logN(ϵ)
log(1/ϵ) , where N(ϵ) is the number of boxes of size ϵ needed to cover the structure in the

image (box-counting method).

Color Variance. This measures the variability in color or brightness across the image: Var = 1
3 (σ

2
R + σ2

G + σ2
B),

where σ2
R, σ

2
G, σ

2
B are the variances of the RGB channels, respectively. For grayscale images, it is computed as the

brightness variance σ2
Gray = 1

N

∑N
i=1(Ii −

1
N

∑N
i=1 Ii)

2, where Ii is the intensity value of the i-th pixel.

By assessing these factors, we developed a weighted complexity score to evaluate and rank the datasets based
on their visual complexity. This analysis is crucial as more complex datasets, with higher entropy and texture
variance, pose a greater challenge for both tasks (attacking and defending). In Table 3, the most notable finding is
a strong negative linear correlation between dataset complexity and the Γ(·) metric for the MI(OT + X̃) method,
which was statistically significant (p = 0.024). This suggests that higher dataset complexity may lead to lower Γ(·)
values, indicating a potential decrease in reconstruction quality. However, no significant correlations were found
between dataset complexity and the classification performance for the Msyn model, despite moderate negative
trends. Additionally, there was no significant correlation between dataset complexity and the best Γ(·) values
from the k-NN smearing defensive method.

Table 3: Correlation analysis between dataset complexity and various metrics for attacking and defending.

Complexity vs. Test Coeff. p-value

Γ(·) for MI(OT + X̃) Pearson r = −0.872 0.024
Γ(·) for MI(OT + X̃) Spearman ρ = −0.771 0.072
Msyn’s accuracy Pearson r = −0.730 0.100
Msyn’s accuracy Spearman ρ = −0.771 0.072
Γ(·) for k∗-NN smearing Pearson r = −0.210 0.690
Γ(·) for k∗-NN smearing Spearman ρ = 0.143 0.787

C. Output Vector Rounding

Figure 2: Bar plots showing no significant drop in reconstruction performance across the three evaluation metrics
when using output vector rounding. On average, (SSIM, 1-MSE, Γ(·)) dropped by (0.031, 0.016, 0.045).



D. Image Features Distribution Analysis

To evaluate how closely the synthetic data generated by the MEDUSA framework mimics the real datasets, we utilize
a symmetric Kullback-Leibler (KL) Divergence score, denoted K(·). This score provides a balanced measure of
the divergence between two probability distributions, enabling us to assess the similarity between the real and
synthetic data distributions. We incorporate both low-level pixel intensity histograms and high-level feature
embeddings extracted from an ImageNet initialized ResNet-50 encoder, providing a comprehensive assessment of
the fidelity of the reconstructed images.

Derivation. Given two datasets, the real dataset DT and the corresponding synthetic dataset Dsyn, we denote
their probability distributions as P and Q respectively. We extract two sets of distributions:

• Pixel Intensity Histograms: Pπ and Qπ, representing the normalized histograms of pixel intensities.

• Feature Distributions: Pf and Qf , obtained by passing images through the pre-trained encoder and generating
histograms over the extracted feature embeddings.

The KL Divergence between two distributions P and Q is defined as: K(P ∥ Q) =
∑

i P (i) log
(

P (i)
Q(i)

)
, where i

indexes over the bins or features. Since KL Divergence is not inherently symmetric, we calculate the score in
both directions and average them to obtain a symmetric KL Divergence. However, before doing so, the pixel and
feature distribution scores need to be combined:

K(DT , Dsyn) = α · K(Pπ ∥ Qπ) + (1− α) · K(Pf ∥ Qf )

K(Dsyn, D
T ) = α · K(Qπ ∥ Pπ) + (1− α) · K(Qf ∥ Pf )

where 0 ≤ α ≤ 1 controls the emphasis on low-level pixel information against high-level semantic features. In our
experiments, we set α = 0.5 to give equal weighting to both components. The symmetric score follows as:

K(DT ≃ Dsyn) =
1

2
(K(DT , Dsyn) +K(Dsyn, D

T ))

Interpretation. As K(·) → 0, the synthetic data is closely aligned with the real data, suggesting that the
model inversion process was effective in recreating the original images. Conversely, a higher score reflects a
greater divergence, indicating that the synthetic data fails to accurately replicate the real dataset’s characteristics.
This metric can therefore be crucial for evaluating the privacy risks posed by potential data leakage through
hybrid model inversion attacks. In Table 4, on average, we see that the synthetic data does relatively well at
approximating the image feature distributions of the real dataset.

Table 4: Symmetric KLD scores between real and synthetic data across all datasets.

Dataset K(DT ≃ Dsyn)

ChestMNIST 0.418
OCTMNIST 0.372
OrganAMNIST 0.390
PathMNIST 0.465
DermaMNIST 0.452
RetinaMNIST 0.417

Mean 0.419± 0.032



Appendix 2: Technical Specifications

All experiments were performed using NVIDIA A100-80GB and V100-32GB configurations. We employ the
ResNet-50 architecture as the backbone for MS and MT , with MI using a modified transposed ResNet architecture
to handle inverse gradient reconstructions. The input tensor shape for each model is configured to be 3×224×224,
ensuring compatibility with any pre-trained weights and consistent normalization.

Table 5: Summary of Training Details

General Specifications

GPU Configuration NVIDIA A100-80GB (SXM) / V100-32GB
Model Backbone ResNet-50 (MS and MT )

Transposed ResNet (MI)
Input Tensor Shape 3× 224× 224
Normalization µ = [0.485, 0.456, 0.406], σ = [0.229, 0.224, 0.225]

Training Configuration for MS and MT

Loss Function Cross-Entropy w/ L2 and total variation regularizations
Max Epochs 100
Batch Size 128
Optimizer Adam
Max Learning Rate 0.001
Learning Rate Scheduler Step LR (decay by 0.1 at 50, 75 epochs)

Training Configuration for MI

Loss Function 1 - SSIM
Max Epochs 100
Warm-Up Epochs 10
Batch Size 128
Optimizer AdamW
Max Learning Rate 0.008
Learning Rate Scheduler Cosine Annealing

Training Configuration for Msyn+

Loss Function Cross-Entropy
Max Epochs 100 (w/ early stopping)
Batch Size 128
Optimizer Adam
Max Learning Rate 0.001
Learning Rate Scheduler Step LR (decay by 0.1 at 50, 75 epochs)



Appendix 3: Auxiliary Images

Figure 3: The first row shows the ground truth images, the second row shows their final synthetic reconstructions,
x̂ = MI(OT + X̃), and the third row shows the corresponding gradient reconstructions, X̃, for OCTMNIST.

Figure 4: Synthetic reconstructions with varying defense strategies. From top to bottom: truncation, Gaussian
noise, k-NN smearing, and output vector rounding. Green indicates the best setting for each method. Last row
are Msyn+ reconstructions with varied |DS

T |.



Figure 5: The first row shows the ground truth images, the second row shows their final synthetic reconstructions,
x̂ = MI(OT + X̃), and the third row shows the corresponding gradient reconstructions, X̃, for DermaMNIST.

Figure 6: Synthetic reconstructions with varying defense strategies. From top to bottom: truncation, Gaussian
noise, k-NN smearing, and output vector rounding. Green indicates the best setting for each method. Last row
are Msyn+ reconstructions with varied |DS

T |.



Figure 7: The first row shows the ground truth images, the second row shows their final synthetic reconstructions,
x̂ = MI(OT + X̃), and the third row shows the corresponding gradient reconstructions, X̃, for RetinaMNIST.

Figure 8: Synthetic reconstructions with varying defense strategies. From top to bottom: truncation, Gaussian
noise, k-NN smearing, and output vector rounding. Green indicates the best setting for each method. Last row
are Msyn+ reconstructions with varied |DS

T |.
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